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What is a Greedy Algorithm?

Wikipedia: “Greedy algorithms are algorithms which follow the

problem solving meta-heuristic of making the locally optimum

choice at each stage with the hope of finding the global

optimum.”

LANL Megamath: “A greedy algorithm might also be called a

single-minded algorithm, or an algorithm that gobbles up all of

its favorites first.”

Implicitly, in all definitions it is assumed that once a decision

has been made, it cannot be reversed.
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Properties of a Greedy Algorithm

• views the instance as a set of items and the output as set

of decisions, one per item;

• defines a criterion for best choices, which orders the items;

• in the order chosen, makes irrevocable decisions for the

data items one at a time;

• when making a decision for the current item only considers

the current and previous items, but not later items.
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The Priority Model

Borodin, Nielsen, and Rackoff 2003 introduce priority

algorithms.

The instance I is a set of items of the same type, Γ.

Γ is a description of the item necessary for solving the

particular problem.

For example, for vertex coloring, Γ may be (v, N(v)) where

v is the name of a vertex and N(v) is a list of the names of

its neighbors.
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The Priority Model cont.

The algorithm makes a decision σi for each item γi ∈ I . The

set of possible decisions Σ depends on the particular

problem.

For example, for k-Vertex Coloring, Σ = {1, . . . , k}.

For Vertex Cover we can have Γ be (v, N(v)) and

Σ = {0, 1}.

Or, can have Γ be (u, v) for (u, v) an edge, and

Σ = {1,−1, 0}.

We define Fixed and Adaptive priority algorithms.
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Fixed Priority Algorithm

Input: I = {γ1, . . . , γn} ⊆ Γ

Output: {(γi, σi)|σi ∈ Σ, i = 1, . . . , n}

Determine ordering π of all possible items of type Γ.

Order I corresponding to π.

Initialize S ← ∅; ordered list L← I .

Repeat until L is empty

• pick first item γi in L

• choose decision σi ∈ Σ, dependent on already decided items

• add (γi, σi) to S

• remove γi from L

Output S
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Adaptive Priority Algorithm

Input: I = {γ1, . . . , γn} ⊆ Γ

Output: {(γi, σi)|σi ∈ Σ, i = 1, . . . , n}

Initialize S ← ∅; ordered list L← I .

Repeat until L is empty

• pick ordering π of all items of type Γ, based only on observed items.

• order L corresponding to π

• pick first item γi in L and choose decision σi ∈ Σ, dependent on

already decided items

• add (γi, σi) to S

• remove γi from L

Output S
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phrased as a fixed priority algorithm.
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Examples

The standard greedy approximation algorithm for Vertex Cover can be

phrased as a fixed priority algorithm.

Γ consists of items (u, v) corresponding to edges (u, v), Σ = {2, 0}.

The algorithm starts with the items in any order ; when deciding (u, v),

decides 0 if either u or v has been taken in the vertex cover, and 2 if none

of them have, thus putting both in the vertex cover.

The size of the vertex cover is then the sum of all decisions. The algorithm

is a 2-approximation.
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Clarkson’s 2-approx for Weighted Vertex Cover is an adaptive priority algorithm.
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Clarkson’s 2-approx for Weighted Vertex Cover is an adaptive priority algorithm.

C = ∅

For all v, W (v) = w(v), D(v) = deg(v).

While E 6= ∅

Let v have minimum W (v)/D(v).

For all e = (u, v) ∈ E:

W (u)←W (u)−W (u)/D(u)

D(u)← D(u)− 1

E ← E \ {e}

W (v)← 0

C ← C ∪ {v}

V ← V − {v}

Return C
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Clarkson’s 2-approx for Weighted Vertex Cover is an adaptive priority algorithm.

C = ∅ Γ consists of items of the form (v, w(v), N(v))

L contains items of instance. S = ∅.

For all v, W (v) = w(v), D(v) = deg(v). For all v, let W (v) = w(v), D(v) = deg(v).

While E 6= ∅ While L 6= ∅

Let v have minimum W (v)/D(v). Sort L according to W (v)/D(v).

Let (v, w(v), N(v)) be first in L.

For all e = (u, v) ∈ E: For all neighbors u of v:

W (u)←W (u)−W (u)/D(u) W (u)←W (u)−W (u)/D(u)

D(u)← D(u)− 1 D(u)← D(u)− 1

E ← E \ {e} If all neighbors of v have been accepted so far,

W (v)← 0 add ((v, w(v), N(v)), reject) to S.

C ← C ∪ {v} Otherwise, add ((v, w(v), N(v)), accept) to S.

V ← V − {v} Remove (v, w(v), N(v)) from L.

Return C Return S
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Notice, in the definition of a priority algorithm, no constraint is placed on

the running time of the order computation. But we think of greedy

algorithms as efficient.
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Input Format Matters

Notice, in the definition of a priority algorithm, no constraint is placed on

the running time of the order computation. But we think of greedy

algorithms as efficient.

Suppose Γ are the items of the form (v,N(v), N2(v)) where where

N(v) = {u1, . . . , uk} and N2(v) = (N(u1), . . . , N(uk)).

Then, a fixed priority algorithm can find a K-clique in a given graph, i.e.

solve an NP-hard problem.

Hence, we may need to place some limitations on Γ.
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• Node Model: Γ defines data items of the form (v, w(v), N(v)), where

v is the node name, w(v) is the node’s weight and N(v) is a list of the

names of the neighbors of v.

• Edge Model: Γ defines data items of the form

((u, v), c(u, v), w(u), w(v)) where (u, v) is an edge, c(u, v) is a

weight of the edge, and w(u) and w(v) are weights for its endpoints.
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Input Models for Graph Problems

Davis and Impagliazzo 2004 propose two input models:

• Node Model: Γ defines data items of the form (v, w(v), N(v)), where

v is the node name, w(v) is the node’s weight and N(v) is a list of the

names of the neighbors of v.

• Edge Model: Γ defines data items of the form

((u, v), c(u, v), w(u), w(v)) where (u, v) is an edge, c(u, v) is a

weight of the edge, and w(u) and w(v) are weights for its endpoints.

Borodin et al. 2005 propose

• Edge Adjacency Model: Γ defines data items of the form

(v, w(v), e1, . . . , edeg(v)), where v is the node name, w(v) is the

node’s weight and the rest is a list of the names of the edges incident

on v.
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Input Models cont.
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Node Model can simulate Edge Adjacency model.

12-a



Input Models cont.

Node Model can simulate Edge Adjacency model.

Borodin et al. show that the Edge Adjacency model can be

strictly weaker than the Node Model.

12-b



Input Models cont.

Node Model can simulate Edge Adjacency model.

Borodin et al. show that the Edge Adjacency model can be

strictly weaker than the Node Model.

Edge Model can simulate Node Model?

12-c



Input Models cont.

Node Model can simulate Edge Adjacency model.

Borodin et al. show that the Edge Adjacency model can be

strictly weaker than the Node Model.

Edge Model can simulate Node Model?

Edge Adjacency < Node≤ Edge.
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Approximation Lower Bounds for Priority Algorithms

The weakness of priority algorithms is that they do not see the

whole input, and must decide each item without knowing the

remainder of the instance.

13-a



Approximation Lower Bounds for Priority Algorithms

The weakness of priority algorithms is that they do not see the

whole input, and must decide each item without knowing the

remainder of the instance.

The lower bound technique lets the adversary fool the

algorithm by allowing several versions of the input and

restricting to the worst input after each decision of the algo.
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Vertex Cover Node Model Approximation Lower Bound

1

2

3

4

The adversary keeps all possible labelings of the above two graphs as possible instances.

Consider the first item the algorithm decides. There are four cases:

• accept degree 2 item (A, (B, C)): Pick labeling of left graph so that vertex 1 is

labeled A and its neighbors are labeled B and C . Remove all other graph versions.

• reject degree 2 item (A, (B, C)): Pick labeling of left graph so that vertex 2 is

labeled A and its neighbors are labeled B and C . Remove all other graph versions.
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Vertex Cover Node Model Approximation Lower Bound

1

2

3

4

• accept degree 3 item (A, (B, C, D)): Pick labeling of right graph so that vertex 3 is

labeled A and its neighbors are labeled B, C and D. Remove all other graph

versions.

• reject degree 3 item (A, (B, C, D)): Pick labeling of right graph so that vertex 4 is

labeled A and its neighbors are labeled B, C and D. Remove all other graph

versions.

No adaptive priority algo (node model) can approximate VC to a better ratio than 4/3.
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Approximation Lower Bound Technique

Given ρ > 0, we give a game between the algorithm and the adversary:
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Given ρ > 0, we give a game between the algorithm and the adversary:

Initialize empty partial instance PI , partial solution PS.

Adversary picks any subset G1 of items of type Γ. Set t = 1.

Repeat until Gt is empty:

Algorithm picks item γt and decision for it σt;

removes γt from Gt, adds (γt, σt) to PS and γt to PI .
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Approximation Lower Bound Technique

Given ρ > 0, we give a game between the algorithm and the adversary:

Initialize empty partial instance PI , partial solution PS.

Adversary picks any subset G1 of items of type Γ. Set t = 1.

Repeat until Gt is empty:

Algorithm picks item γt and decision for it σt;

removes γt from Gt, adds (γt, σt) to PS and γt to PI .

Adversary replaces Gt with some Gt+1 ⊆ Gt. Set t = t + 1.

Adversary presents solution S to PI .

Algorithm wins if PI is not a valid instance, S is not a valid solution, or the

approximation ratio is better than ρ.
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2–Inapproximability for Weighted Vertex Cover in the Node Model
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Adversary picks Kn,n, and lets Γ define items of the type

(v, w(v), N(v)) where w(v) is either 1 or n2. Two items per vertex.
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2–Inapproximability for Weighted Vertex Cover in the Node Model

Adversary picks Kn,n, and lets Γ define items of the type

(v, w(v), N(v)) where w(v) is either 1 or n2. Two items per vertex.

If the Algorithm observes an item (v, w(v), N(v)), the Adversary

removes the other item corresponding to v.

The Adversary waits until one of the following occurs:

• Algorithm accepts item of weight n2: Adversary fixes weights of nodes

on the other side to 1, and unseen same side items to weights of n2.

• Algorithm rejects item. Adversary fixes unseen item weights on the

same side to 1, and those on the other side to n2.

• Algorithm accepts n− 1 items of weight 1 from the same side of Kn,n.

Adversary fixes weight of last item in A to n2, and all unseen nodes on

the other side to weight 1.
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2–Inapproximability for Weighted Vertex Cover in the Node Model

• Algorithm accepts item of weight n2: Adversary returns nodes on the

other side as his solution of weight n. Algorithm has partial solution of

weight at least n2.

n
2

1

1

1

1

1

1

1
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2–Inapproximability for Weighted Vertex Cover in the Node Model

• Algorithm rejects item. Adversary returns nodes from the same side as

his solution of weight at most n2 + n− 1. Algorithm must accept all

items on the other side - at least two of these have weight n2, and

hence the algorithm solution is of weight at least 2n2 + n− 2.

n
2

1

1

1

1

1

n
2

n
2
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2–Inapproximability for Weighted Vertex Cover in the Node Model

• Algorithm accepts n− 1 items of weight 1 from the same side of Kn,n.

Adversary returns nodes on the other side as his solution of weight n.

The Algorithm can at best return a solution of weight 2n− 1.

n
2

1

1

1

1

1

1

1
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Various Other Approximation Lower Bounds

• No fixed priority algo can approximate the (positive weights) shortest path problem

within any ratio. No adaptive priority algo can approximate the shortest path problem

within any ratio, when negative weights are allowed.
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Various Other Approximation Lower Bounds

• No fixed priority algo can approximate the (positive weights) shortest path problem

within any ratio. No adaptive priority algo can approximate the shortest path problem

within any ratio, when negative weights are allowed.

• Steiner tree with weights between 1 and 2: no adaptive priority algorithm can achieve

a ratio better than 1.18. Best adaptive priority approx is 1.75.

• Degree-3 Independent Set - no adaptive priority algorithm in the node model can

achieve a ratio better than 3/2. Best approx is 5/3.

• Weighted Independent Set on Cycles - no adap. prio. algorithm in the edge adj.

model can achieve a ratio better than 3/2. Best adap. prio. approx. is 3/2.

• Vertex Coloring - any fixed priority algo in the edge adjacency model must use at

least d + 1 colors on bipartite graphs of max degree d.

• Set Cover - no adaptive priority algo can achieve a ratio better than

lnn− ln lnn + Θ(1). No fixed priority algo can achieve a ratio better than

(1− ǫ)n, for any ǫ > 0.
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Extensions

Acceptance-first: priority algorithms in the accept/reject context which do

not accept any items after the first rejected item.

Memoryless: only remember accepted items.

Angelopoulos suggestion 2004: indistinguishible items receive the same

priority - this increases the power of the adversary.

BT algorithms: allows branching on different decisions and backtracking;

generalizes both priority algorithms and dynamic programming.

Alekhnovich et al. prove various lower bounds in this more general model.
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Thank You!
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