
Graduate Algorithms
First Problem Set

Virginia Vassilevska, Elisabeth Crawford

01/18/04

Problem 1

Let q = blog2 pc.
The paper ”Time Bounds for Selection” describes an algorithm A which com-
putes the i-th smallest number in a given set of size n in time O(n). Recursively
use this algorithm as follows:

Subdivide(S, level)

1. if level=q, return S

2. else find median m using algorithm A

3. go through S once and let S< = {s ∈ S| s < m}, S= = {s ∈ S| s = m},
S> = S\{S< ∪ S=} (multisets)

4. Move b|S|/2c − |S<| of the elements in S= to S< and the rest to S>.

5. return (Subdivide(S<, q + 1), Subdivide(S>, q + 1))

Subdivide(S, 0) returns a partitioning of S into p′ = 2q sets Ti each of size
bn/p′c or dn/p′e, and such that if i < j, then ∀s ∈ Ti and t ∈ Tj , s ≤ t. The
number of steps performed at level L < q is O(2L(1 + n/2L) = O(2L + n) since
there are 2L sets of size at most n/2L + 1 at level L and steps 2, 3 and 4 take
time linear in the size of the set. There are q levels L < q and Subdivide(S, q)
takes O(1) time. Thus the entire subdivision takes O(qn+

∑q−1
L=0 2L) = O(qn) =

O(n log(p)).

1

Suppose n = η (mod p). Now we can sequentially find the n/p-th element
in each of the Ti as follows:

1. Let k = 1, N = dn/pe
2. for i from 1 to p′

3. using algorithm A find the N -th element m in Ti
4. go through Ti and split into Ti1 = {t ∈ Ti|t < m}, T= = {t ∈ Ti| t = m}

and Ti2 = Ti\{Ti1 ∪ T=}
5. Move N − |Ti1| of the elements in T= to Ti1 and the rest to Ti2
6. let Pk = Ti1, k = k + 1
7. if i = η, N = bn/pc
8. if |Ti2| < N let Ti+1 = Ti+1 ∪ Ti2
9. else using A find the N -th element m′ in Ti
10. split Ti2 into Ti21 = {t ∈ Ti2| t < m′}, Ti23 = {t ∈ Ti2| t = m′}

and Ti22 = Ti2\{Ti21 ∪ Ti23}
11. Move N − |Ti21| of the elements in Ti23 into Ti21 and the rest into Ti22.
12. let Pk = Ti21, k = k + 1
13. let Ti+1 = Ti+1 ∪ Ti22

Since each Ti had size at most n/p′ + 1 < 2n/p + 1, and since at most n/p
elements from Ti−1 are added to Ti before going through it, at most 3 searches
for an N -th element are done in each Ti. Hence the split of each (modified) Ti
is done in at most 3 (3n/p + 1) steps. Since there are at most p Ti, the entire
final split is done in O(n + p) = O(n) steps. Overall, partitioning the original
set takes O(n log p) time. Since the last partitioning is done using ceilings in
the first η searches, and floors in the rest, the partitioning will work exactly as
asked: n = p bn/pc + η = ηdn/pe + (p − η)bn/pc. The resulting partitions Pk
for k = 1, . . . , p, will contain η partitions of size dn/pe and p − η partitions of
size bn/pc.

Problem 2

Consider the following structure SVi storing a set Vi: SVi has a head storing the
index i, and the size of Vi, having a child pointer to a node representing some
element of Vi. Think of having arranged the elements of Vi on a straight line
thus giving them some order. The head points to the first element in that order,
and each element points to the next element in that order, and to the head of
the list. The ”find” operation corresponds to checking the index stored in the
head which takes one step since there is a direct pointer from each element to
the head. The ”merge” operation corresponds to:

2

• comparing the sizes of Vi and Vj by checking their heads,

• adding the size of the smaller one Vi to the size of Vj stored in the head
of Vj ,

• making each element of Vi point to the head of Vj (by following the child
pointers starting from the head of Vi and changing the head pointer of
each element),

• making the last element of Vi (which points to NULL) now point to the
first element in Vj ,

• making the head of Vj point to the first element of Vi and

• deleting the original head of Vi.

The above clearly takes O(min {|Vi|, |Vj |}) time.

Problem 3

a

i) Any cycle in B would also be a cycle in A. Therefore B must be acyclic and
so B ∈ I(G).

ii) Let A ∈ I(G) and B ∈ I(G), s.t. |A| < |B|. Say that a vertex v is in
A if there is an edge in A s.t. one of its end points is v. Now suppose that
∀x ∈ BA ∪ {x} /∈ I(G). Then each x ∈ B is either in A or creates a cycle
in A (i.e. there is a path in A between its end points). In particular its end
points are vertices in A. And so the number of vertices in A is at least the
number of vertices in B. Then if two edges x and y are in the same connected
component in B, then their end points are in the same connected component in
A. Therefore the number of connected components in B is at least the number
of connected components in A. Hence the number of edges in B = number of
vertices in B - number of components in B, which is at most number of vertices
in A - number of components in A = number of edges in A. Contradiction since
|B| > |A|. Therefore there exists an x ∈ B such that A ∪ {x} ∈ I(G).

b

i) Clearly, ∅ ∈ I(M). So let A = {ai} ∈ I(M) and B ⊆ A, B 6= ∅, and F be the
field. Suppose

∑
i: bi∈B βi bi = 0 for some choice of βi ∈ F at least one of which

is nonzero. Then for each ai ∈ A let αi = βj for ai = bj ∈ B and αi = 0 for
ai /∈ B. Then clearly

∑
i: ai∈A αiai = 0 and at least one αi 6= 0. So A /∈ I(M)

and we have a contradiction. So any subset of A is in I(M).

ii) Let A,B ∈ I(M), such that |A| < |B|. Then need to show that ∃x ∈ B such
that A∪{x} ∈ I(M). Suppose this is not so. Then if L(A) is the linear span of

3

A, then ∀x ∈ B x ∈ L(A). Suppose |A| = k. Take any k+ 1 subset of B, call it
B′. We’ll show by an induction on k that B′ is dependent. If k = 1, then L(A)
consists of scalar multiplies of the unique a ∈ A. So take any two b1, b2 ∈ B,
b1 = β1a, b2 = β2a, β1, β2 6= 0. These are clearly linearly dependent and so by
i) B /∈ I(M).
Now suppose the assertion holds for all A with |A| = k−1 and B with |B| > |A|.
Consider A,B ∈ I(M) such that k = |A| < |B| and B′ ⊂ B with |B′| = k + 1.
For each bj ∈ B′ consider the unique representation of bj as a linear combina-
tion of vectors in A: bj =

∑
i αij ai. Examine all scalars α1j . We have two cases:

1. α1j = 0 ∀j. Then each bj ∈ B′ is in the linear span of {a2, . . . , ak}. By
the induction hypothesis it follows that B is dependent and so B /∈ I(M).

2. Without loss of generality α11 6= 0. Let qj = α1jα
−1
11 . Then qjb1 =

α1ja1 +
∑k
i=2 qjαi1ai. Then qjb1 − bj =

∑k
i=2(qjαi1 − αij)ai for all k

elements bj ∈ B′, j > 1 and so by the induction hypothesis applied to
A′ = {a2, . . . , ak} and B′′ = {qjb1 − bj | j = 2, . . . , k + 1} it follows
that B′′ is dependent. This means there are some γj ∈ F such that∑k+1
j=2 γj(qjb1−bj) = 0, and so (

∑k+1
j=2 γjqj)b1−

∑k+1
j=2 γjbj = 0. Therefore

B′ and thus B is dependent.

Hence we get a contradiction for any k and so if A,B ∈ I(M) such that |A| <
|B|, then there is an x ∈ B so that A ∪ {x} ∈ I(M).

c

YES. Consider the incidence matrix M of the graph G, which is n ×m (n =
|V (G)|, m = |E(G)|) and mij = 1 if vertex i is an end point of edge j, and
mij = 0 otherwise. The field is GF (2). Then there is a clear bijection between
edges j and columns j. Suppose now there is a subset of columns of M , say A,
and that

∑
a∈A a = 0 (where the sum is in GF (2) and the 0 is the zero column;

also note that any dependent set of columns of M contains such a subset A).
In order for this to hold, given any column mj ∈ A with mi1j = mi2j = 1 and
mij = 0 ∀i 6= i1, i2, one can find another two columns ml1 ,ml2 ∈ A such that
mi1l1 = 1 and mi2l2 = 1. Since A is finite, there is a circular sequence of columns
mj1 ,mj2 , . . . ,mjp−1 ,mjp = mj1 where each two consecutive columns agree in a
1-entry. This immediately gives a cycle in G defined by those edges, and thus
the edge set of G corresponding to A is dependent. Therefore, if S ∈ I(G), then
necessarily the corresponding set of columns b(S) ∈ I(M).

Problem 4

1. The data structures and the algorithm

First sort the edges of G with respect to weight and store edge structures rep-
resenting them in a queue Q with the smallest edge in the front. Each edge

4

structure will contain two pointers - one to each of the end points of the edge.
The vertices will be stored in component structures, so that two vertices are in
the same structure if and only if they are in the same connected component.
The component structures are the structures described in problem 2. We will
also keep a bit array A in which we will store the state of each component during
a particular stage. The edges of the minimum spanning tree will be stored in a
queue T .

Using these data structures, the algorithm can be done as follows: First
initialize the queue Q with the sorted edges, and set T to the empty queue.
At each stage, go through the current edge queue Q:

• If the queue is empty, then return T .

• Set all bits in A to be 0.

• For the current edge e from the queue Q

– If both end points of the current edge e are in the same component,
then delete e from the queue and consider the next edge.

– If the end points of e are in different components, and the bits in
A corresponding to those components are both 1, then consider the
next edge (leaving this one for the next stage)

– If the end points of e are in different components and at least one
of the bits is 0, then merge the two components, change the bit
corresponding to the new index to a 1, delete e from Q and add it to
T and consider the next edge.

• Once you’ve gone once through the queue, go to the next stage starting
from the beginning of the modified queue.

2. The algorithm is correct

Notice that since the edges are sorted by weight, if an edge is added between
two components, then it is the first one to be seen in the edge queue going out
of (at least) one of these components (ensured by the bit array A). Therefore
it is of the smallest weight for that component, and the algorithm does what
is described in the problem. The algorithm terminates since at each step Q
gets smaller: it ends when Q is empty. Since at each step two components are
connected by adding a single edge, no cycles can ever be created. Since the
algorithm terminates when all possible edges are added without creating a cycle
(the queue is empty in the end so all edges are considered, and only duplicate
component links are deleted), and since the graph was originally connected, in
the end everything must be in the same connected component and the result is
a spanning tree. Since the edges between each two connected components were
chosen w.r.t. minimality of weight, the spanning tree must be minimum.

5

3. Number of stages

At each point the number of components is at least halved since each component
is merged with at least one of the other ones. Initially there were n components
and in the end there is 1 component. Therefore there are at most log2n stages.

4. Complexity

Consider one stage of the algorithm. First all bits of A are set to 0. This takes
O(n) as there are n bits. Each merge takes O(size of the smaller component).
We know that in each merge at least one of the components has not been touched
yet. Thus we can charge the merge to the untouched component (where we are
possibly overcounting because this may be the larger one). Thus all merges
together take O(n) time since the sum of the sizes of the components is n. The
rest of the algorithm consists of doing a constant number of O(1) operations for
each edge in the queue which together takes at most O(m) time. Hence each
stage takes O(m) time (as n = O(m) since the graph is connected). Since there
are at most log2 n stages, the algorithm running time is O(m log n).

6

